\geq
_
0
- 1
Ø
N
0
Ω
Ξ
J
α
₹
_
3
ς.
>
$\overline{}$
```
- 1
Q
Ξ
Ξ
4

STUDY MODULE DI	ESCRIPTION FORM				
Name of the module/subject	Code				
Languages and paradigms of programming		1010334521010334960			
Field of study	Profile of study (general academic, practical)	Year /Semester			
Information Engineering	(brak)	1/2			
Elective path/specialty	Subject offered in: Polish	Course (compulsory, elective) <b>obligatory</b>			
Overland at about in	Toman tangentary				
Cycle of study:	Form of study (full-time,part-time)				
First-cycle studies	part-time				
No. of hours		No. of credits			
Lecture: 20 Classes: - Laboratory: 20	Project/seminars:	- 6			
Status of the course in the study program (Basic, major, other)	(university-wide, from another fi	eld)			
(brak)	(brak)				
Education areas and fields of science and art		ECTS distribution (number and %)			
technical sciences		6 100%			
Technical sciences		6 100%			
Responsible for subject / lecturer:					

PH.D.Eng. Beata Jankowska email: beata.jankowska@put.poznan.pl tel. +48 61 665 37 24 Wydział Elektryczny ul. Piotrowo 3A 60-965 Poznań

## Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Student has an elementary mathematical knowledge, including algebra, analysis, logics, theory of probability, elements of discrete maths and applied maths.
2	Skills	Student can: use programming environments and platforms for coding, running and testing simple programs in imperative laguages; prepare and show a short presentation of the results of an executed engineering task.
3	Social competencies	Student realises the responsibility for his/her work done individually or in a team; also, he/she is ready to accept the rules of group work.

# Assumptions and objectives of the course:

the understanding of different programming styles (and languages); a mastery of choosing an appropriate style and language to solve a specific problem; a particular competence to design and implement various algorithms in object-oriented style and language; the clever using of constructs that are typical of object-oriented languages (C++).

## Study outcomes and reference to the educational results for a field of study

## Knowledge:

- 1. Student has an organized and theoretically grounded knowledge in the fields of: basic algorithms and their analysing, techniques of designing algorithms, abstract data structures and their implementation, hard computational problems. [K_W04]
- 2. Student has an organized and theoretically grounded knowledge in the fields of: basic programming constructs, algorithms implementation, paradigms and styles of programming, methods of verifying program correctness, formal languages and compilers, programming platforms. [K_W05]

#### Skills:

- 1. Student can design algorithms (with the use of basic algorithmic techniques) and estimate their complexity. [K_U09]
- 2. Student can use programming environments and platforms for coding, running and testing simple programs in imperative, object-oriented and declarative languages. [K_U10]
- 3. Student can prepare the documentation of an executed engineering task, including the discussion of the obtained results. [K_U03]

## Social competencies:

- 1. Student realises the importance of: executing projects precisely, preserving notational standards and linguistic correctness, and completing works on time. [K_K07]
- 2. Student realises the importance and understands non-technical aspects and effects of computer engineer [K_K02]

## Assessment methods of study outcomes

Lecture: written exam.

Labs: rating student's results of input tests, internal tests, programming activity, and his/her solution of an optional project task (implementation in C++, written documentation).

More than 50% points are necessary for passing the exam and labs.

#### Course description

#### Lectures:

Different styles of programming and their classification. Goals and rules of object modeling. The Unified Modeling Language the most often used structural and behavioral diagrams. Basic paradigms of object-oriented programming (encapsulation, inheritance, polymorphism) and their implementation in C++ language. Input/output libraries in C++. Handling errors and exceptions in object-oriented languages. Function overloading and operator overloading. Dynamic storage management in object-oriented languages and systems. Generic Programming, the Standard Template Library. Rules of multi-thread programming. Regular expressions and the Boost.Regex library.

A brief overview of Java language.

SOLID - five principles of effective object-oriented programming.

Labs:

Designing and implementing algorithms in C++ language.

Applied methods of teaching: Lectures - interactive lectures, with questions addressed to the whole group of students or to individual students; lectures supplemented by materials for self-studying in the Moodle e-learning platform;

Labs - university classes supplemented by materials prepared for self-performing of work in the Moodle e-learning platform; team work.

2017 update: Goals and rules of object modeling. The Unified Modeling Language - the most often used structural and behavioral diagrams. Regular expressions and the Boost.Regex library. SOLID - five principles of effective object-oriented programming.

## Basic bibliography:

- 1. Stroustrup B., Język C++. Kompendium wiedzy. Wydanie IV, Helion, 2014.
- 2. Grębosz J., Symfonia C++ standard. Programowanie w języku C++ orientowane obiektowo. Tom I i II, Wydanie 3B, Helion, 2010.
- 3. Prata S., Język C++. Szkoła programowania. Wydanie VI, Helion, 2012.

## Additional bibliography:

- 1. Prata S., Język C. Szkoła programowania. Wydanie V, Helion, 2006.
- 2. Eckel B., Thinking in C++. Edycja polska, Helion, 2012.

# Result of average student's workload

Activity	Time (working hours)
1. Lectures	20
2. Labs	20
3. Final exam and consultations	10
4. Preparing for labs	30
5. Preparing for internal tests	25
6. Preparing for the final exam	45

### Student's workload

Source of workload	hours	ECTS
Total workload	150	6
Contact hours	75	3
Practical activities	75	3